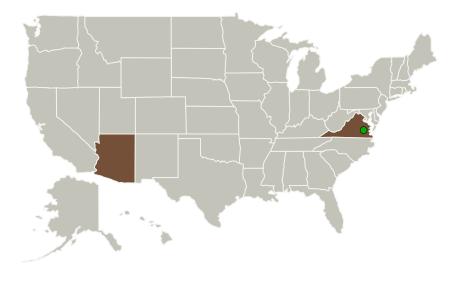
Radiation-Hardened 1.55 Micron Fiber Laser for Coherent LIDAR, Phase I



Completed Technology Project (2015 - 2015)

Project Introduction

In this proposal, we propose to demonstrate and build high pulse energy near 1.55 micron wavelength single frequency fiber laser by developing an innovative polarization maintaining Er-doped gain fiber with extremely large mode field diameter. Such a single frequency high energy and high peak power fiber laser is needed for coherent lidar and sensing. We will enhance the radiation resistance of the gain fiber in order to make it suitable for NASA's applications. In Phase I, we will design and fabricate Er-doped glasses, fiber preforms, and fibers. High pulse energy will be demonstrated. This proposed system will be all-fiber based, which offers excellent reliability. Successful demonstration of such a fiber laser can enable many new NASA and commercial applications.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
AdValue Photonics, Inc.	Lead Organization	Industry Small Disadvantaged Business (SDB)	Tucson, Arizona
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Radiation-Hardened 1.55 Micron Fiber Laser for Coherent LIDAR, Phase I

Table of Contents

Project Introduction Primary U.S. Work Locations	1	
and Key Partners	1	
Project Transitions		
Images	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)		
Technology Areas		
Target Destinations	3	

Small Business Innovation Research/Small Business Tech Transfer

Radiation-Hardened 1.55 Micron Fiber Laser for Coherent LIDAR, Phase I

Completed Technology Project (2015 - 2015)

Primary U.S. Work Locations		
Arizona	Virginia	

Project Transitions

June 2015: Project Start

December 2015: Closed out

Closeout Summary: Radiation-Hardened 1.55 Micron Fiber Laser for Coherent LIDAR, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/139378)

Images

Briefing Chart Image

Radiation-Hardened 1.55 Micron Fiber Laser for Coherent LIDAR, Phase I (https://techport.nasa.gov/imag e/131382)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

AdValue Photonics, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Shibin S Jiang

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Radiation-Hardened 1.55 Micron Fiber Laser for Coherent LIDAR, Phase I

Completed Technology Project (2015 - 2015)

Technology Areas

Primary:

- **Target Destinations**

Earth, The Moon, Others Inside the Solar System, Outside the Solar System, The Sun, Mars

